Emission spectrum
The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted by the element's atoms or the compound's molecules when they are returned to a lower energy state.
Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify the elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.
Emission (Light)
In physics, emission is the process by which a higher energy quantum mechanical state of a particle becomes converted to a lower one by through a photon, resulting in the production of light. The frequency of light emitted is a function of the energy of the transition. Since energy must be conserved, the energy difference between the two states equals the energy carried off by the photon. The energy states of the transitions can lead to emissions over a very large range of frequencies. For example, visible light is emitted by the coupling of electronic states in atoms and molecules (then the phenomenon is called fluorescence or phosphorescence). On the other hand, nuclear shell transitions can emit high energy gamma rays, while nuclear spin transitions emit low energy radiowaves.
The emittance of an object quantifies how much light is emitted by it. This may be related to other properties of the object through the Stefan–Boltzmann law. For most substances, the amount of emission varies with the temperature and the spectroscopic composition of the object, leading to the appearance of color temperatureemission lines. Precise measurements at many wavelengths allow the identification of a substance via emission spectroscopy. and
Emission of radiation is typically described using semi-classical quantum mechanics: the particle's energy levels and spacings are determined from quantum mechanics, and light is treated as an oscillating electric field that can drive a transition if it is in resonance with the system's natural frequency. The quantum mechanics problem is treated using time-dependent perturbation theory and leads to the general result known as Fermi's golden rule. The description has been superseded by quantum electrodynamics, although the semi-classical version continues to be more useful in most cases.
Origins
When the electrons in the atom are excited, for example by being heated, the additional energy pushes the electrons to higher energy orbits. When the electrons fall back down and leave the excited state, energy is re-emitted in the form of a photon. The wavelength (or, equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's emission spectrum.
The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted. Each of these frequencies are related to energy by the formula:
- Ephoton = h ν,
where E is the energy of the photon, ν is its frequency, and h is Planck's constant. This concludes that only photons having certain energies are emitted by the atom. The principle of the atomic emission spectrum explains the varied colors in neon signs, as well as chemical flame test results mentioned above.
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level/orbital. When the electron falls back to its ground level the light is emitted.